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Abstract

robosuite is a simulation framework for robot learning powered by the
MuJoCo physics engine. It offers a modular design for creating robotic
tasks as well as a suite of benchmark environments for reproducible re-
search. This paper discusses the key system modules and the benchmark
environments of our new release robosuite v1.5. For the latest updates
on robosuite, please visit our project website.

1 Introduction

We introduce robosuite, a modular simulation framework and benchmark for
robot learning. This framework is powered by the MuJoCo physics engine [15],
which performs fast physical simulation of contact dynamics. The overarching
goal of this framework is to facilitate research and development of data-driven
robotic algorithms and techniques. The development of this framework was
initiated from the SURREAL project [3] on distributed reinforcement learning
for robot manipulation, and is now part of the broader Advancing Robot In-
telligence through Simulated Environments (ARISE) Initiative, with the aim of
lowering the barriers of entry for cutting-edge research at the intersection of AI
and Robotics.

Data-driven algorithms [9], such as reinforcement learning [13, 7] and imita-
tion learning [12], provide a powerful and generic tool in robotics. These learning
paradigms, fueled by new advances in deep learning, have achieved some excit-
ing successes in a variety of robot control problems. Nonetheless, the challenges
of reproducibility and the limited accessibility of robot hardware have impaired
research progress [5]. In recent years, advances in physics-based simulations and
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Figure 1: Procedurally generated robotic environments with robosuite APIs

graphics have led to a series of simulated platforms and toolkits [1, 14, 8, 2, 16]
that have accelerated scientific progress on robotics and embodied AI. Through
the robosuite project we aim to provide researchers with:

1. a modular design that offers great flexibility to create new robot simulation
environments and tasks;

2. a high-quality implementation of robot controllers and off-the-shelf learn-
ing algorithms to lower the barriers to entry;

3. a standardized set of benchmark tasks for rigorous evaluation and algo-
rithm development.

Our new release of robosuite v1.5 contains ten robot models, nine gripper
models, four base models, six body part controller modes, and nine standard-
ized tasks. The body part controllers span the most frequently used action
spaces (joint space and Cartesian space) and have been tested and used in pre-
vious projects [11]. We use a composite controller interface to compose different
body part controllers. robosuite also offers a modular design of APIs for build-
ing new environments with procedural generation. We highlight these primary
features below:

1. standardized tasks: a set of standardized manipulation tasks of large diver-
sity and varying complexity and RL benchmarking results for reproducible
research;

2. procedural generation: modular APIs for programmatically creating new
environments and new tasks as a combinations of robot models, arenas,
and parameterized 3D objects;

3. realistic composite robot controllers: a high-level composite controller that
orchestrates a selection of body part controller implementations to com-
mand the robots in joint space and Cartesian space, in position, velocity
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Figure 2: System diagram of robosuite modules. An actor (e.g. a Policy or
a human using an I/O Device) generates actions commands and pass them to
the robosuite Environment. The action is transformed by the controller of
the robot into torque commands and executed by the MuJoCo physics engine.
The result of the execution is observed via Sensors, that provide observations
to the actors, together with reward and metadata from the Environment. The
Environment is the result of instantiating a Task model composed of a Robot
Model, an Arena, and, possibly, some objects defined by Object Models.

or torque, including inverse kinematics control, and operational space con-
trol;

4. multi-modal sensors: heterogeneous types of sensory signals, including
low-level physical states, RGB cameras, depth maps, segmentation masks,
and proprioception;

5. human demonstrations: utilities for collecting human demonstrations (with
keyboard, 3D mouse and GUI with cursor devices), replaying demonstra-
tion datasets, and leveraging demonstration data for learning.

In the rest of the manuscript, we will describe the overall design of the simulation
framework and the key system modules. We will also describe the benchmark
tasks in the v1.0 robosuite release and benchmarking results of the most rele-
vant state-of-the-art data-driven algorithms on these tasks.

2 System Modules

In this section we describe the overall system design of robosuite. robosuite
offers two main APIs: 1) Modeling APIs to describe and define simulation
environments and tasks in a modular and programmatic fashion, and 2) Sim-
ulation APIs to wrap around the physics engine and provide an interface for
external actors (i.e. a Policy or an I/O Device) to execute actions, and re-
ceive observations and rewards. The Modeling APIs are used to generate a
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Simulation Model that can be instantiated by the MuJoCo engine [15] to
create a simulation runtime, called Environment. The Environment generates
observations through the Sensors, such as cameras and robot proprioception,
and receives action commands from policies or I/O devices that are transformed
from the original action space (e.g. joint velocities, or Cartesian positions) into
torque commands by the Controllers of the Robots. The diagram above
illustrates the key components in our framework and their relationships.

A simulation model is defined by a Task object, which encapsulates three es-
sential constituents of robotic simulation: RobotModel(s), Object Model(s),
and an Arena. A task may contain one or more robots, zero to many ob-
jects, and a single arena. The RobotModel object loads models of robots and
their corresponding GripperModel(s) and RobotBaseModel from provided
XML files. The Object Model defined by MujocoObject can be either loaded
from 3D object assets or procedurally generated with programmatic APIs. The
Arena object defines the workspace of the robot, including the environment
fixtures, such as a tabletop, and their placements. The Task class recombines
these constituents into a single XML object in MuJoCo’s MJCF modeling
language. The generated MJCF object is passed to the MuJoCo engine through
the mujoco library that instantiates and initializes the simulation. The result
of this instantiation is a MuJoCo runtime simulation object (the MjSim ob-
ject) that contains the state of the simulator, and that will be interfaced via our
Simulation APIs.

The Environment object (see Section 2.1) provides OpenAI Gym-style
APIs for external inputs to interface with the simulation. External inputs corre-
spond to the action commands used to control the Robot(s) their grippers and
their bases (see Section 2.2), where the action spaces are specific to the Con-
troller(s) used by the robots (see Section 2.3). For instance, for a joint-space
position controller for a robot arm, the action space corresponds to desired posi-
tion of each joint of the robot (dimensionality=number of degrees of freedom of
the robot), and for an operational space controller, the action space corresponds
to either desired 3D Cartesian position or desired full 6D Cartesian pose for the
end-effector. These action commands can either be automatically generated
by an algorithm (such as a deep neural network policy) or come from an I/O
Device(s) for human teleoperation, such as the keyboard or a 3D mouse (see
Section 2.6). The controller of the robot is responsible for interpreting these
action commands and transforming them into the low-level torques passing to
the underlying physics engine (MuJoCo), which performs internal computations
to determine the next state of the simulation. Sensor(s) retrieve information
from the MjSim object and generate observations that correspond to the phys-
ical signals that the robots receive as response to their actions (see Section 2.5).
Our framework supports multiple sensing modalities, such as RGB-D cameras,
force-torque measurements, and proprioceptive data, allowing multimodal so-
lutions to be developed. In addition to these sensory data, environments also
provide additional information about the task progress and success conditions,
including reward (for reinforcement learning) and other meta-data (e.g. task
completion). In the following, we describe in detail the individual components

4

http://www.mujoco.org/book/XMLreference.html
http://www.mujoco.org/book/XMLreference.html
https://github.com/google-deepmind/mujoco
https://gym.openai.com/


of robosuite.

2.1 Environments

Environments provide the main APIs for external/user code to interact with
the simulator and perform tasks. Each environment corresponds to a robotic
task and provides a standard interface for an agent to interact with the envi-
ronment.

Environment(s) are created by calling make with the name of the task
(see Section 3.1 for a suite of standardized tasks provided in robosuite) and
with a set of arguments that configure environment properties such as whether
on-screen (has renderer) or off-screen rendering (has offscreen renderer) is
used, whether the observation space includes physical states (use object obs)
or image (use camera obs) observations, the control frequency (control freq),
the episode horizon (horizon), and whether to shape rewards or use a sparse
one (reward shaping).

Environments have a modular structure, making it easy to construct new
ones with different robot arms (robots), grippers (gripper types), and con-
trollers (controller configs). Every environment owns its own MJCF model
that sets up the MuJoCo physics simulation by loading the robots, the workspace,
and the objects into the simulator appropriately. This MuJoCo simulation
model is programmatically instantiated in the load model function of each
environment, by creating an instance of the Task class.

Each Task class instance owns an Arena model, a list of Robot model
instances, and a list of Object model instances. These are robosuite classes
that introduce a useful abstraction in order to make designing scenes in MuJoCo
easy. Every Arena is based off of an XML that defines the workspace (for
example, table or bins) and camera locations. Every Robot is a MuJoCo
model of each type of robot arm (e.g., Sawyer, Panda, etc.). Every Object
model corresponds to a physical object loaded into the simulation (e.g., cube,
pot with handles, etc.).

Each Task class instance also takes a placement initializer as input.
The placement initializer determines the start state distribution for the
environment by sampling a set of valid, non-colliding placements for all of the
objects in the scene at the start of each episode (e.g., when env.reset() is
called).

2.2 Robots

Robots are a key component in robosuite, serving as the embodiment of the
agent that interacts within the environment. robosuite captures this level of
abstraction with the Robot-based classes, with support for both single-armed
and bimanual variations, as well as robots with mobile manipulation capabilities,
including both legged and wheeled variants. In turn, the Robot class is defined
by a RobotModel, GripperModel(s) (with no gripper being represented by a
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Figure 3: Overview of the Robot module’s structure and usage. A Robot is
initialized with appropriate models and controller, interacts with the environ-
ment during runtime, and can be accessed to retrieve relevant state information
at any point during the simulation.

dummy class), RobotBaseModel, and Controller(s). The high-level features
of robosuite’s robots are described as follows:

• Diverse and Realistic Models: the current version of robosuite pro-
vides models for 10 commercially-available robots (including the humanoid
GR1 Robot), 9 grippers (including the Inspire dexterous hand model),
4 bases (including the Omron wheeled mobile base), and 6 body-part con-
trollers, with model properties either taken directly from official product
documentation or raw spec sheets. We also provide an extension pack-
age from the robosuite-models repository which currently includes ad-
ditional 8 robots, 8 grippers, and 3 bases. This extension package must
be installed separately and it is actively maintained.

• Modularized Support: Robots are designed to be plug-and-play—any
combinations of robots, grippers, bases, and controllers can be used, as-
suming the given environment is intended for the desired robot config-
uration. Because each robot is assigned a unique ID number, multiple
instances of identical robots can be instantiated within the simulation
without error.

• Self-Enclosed Abstraction: For a given task and environment, any
information relevant to the specific robot instance can be found within the
properties and methods within that instance. This means that each robot
is responsible for directly setting its initial state within the simulation at
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the start of each episode, and also directly controls the robot in simulation
via torques outputted by its controller’s transformed actions.

robosuite currently supports 10 commercially-available robot models. We
briefly describe each individual model along with its features below:

Panda is a 7-DoF and relatively new robot model pro-
duced by Franka Emika, and boasts high positional ac-
curacy and repeatability. A common choice for both
simulated and real-robot research, we provide a substan-
tial set of benchmarking experiments using this robot.
The default gripper for this robot is the PandaGrip-
per, a parallel-jaw gripper equipped with two small fin-
ger pads, that comes shipped with the robot arm.

Sawyer is Rethink Robotic’s 7-DoF single-arm robot,
which also features an additional 8th joint (inactive and
disabled by default in robosuite) for swiveling its dis-
play monitor. Along with Panda, Sawyer serves as the
second testing robot for our set of benchmarking ex-
periments. Sawyer’s default RethinkGripper model
is a parallel-jaw gripper with long fingers and useful for
grasping a variety of objects.

IIWA is one of KUKA’s industrial-grade 7-DoF
robots, and is equipped with the strongest actua-
tors of the group, with its per-joint torque limits ex-
ceeding nearly all the other models in robosuite by
over twofold! By default, IIWA is equipped with the
Robotiq140Gripper, Robotiq’s 140mm variation
of their multi-purpose two finger gripper models.

Jaco is a popular sleek 7-DoF robot produced by Ki-
nova Robotics and intended for human assistive appli-
cations. As such, it is relatively weak in terms of max
torque capabilities. Jaco comes equipped with the Ja-
coThreeFingerGripper by default, a three-pronged
gripper with multi-jointed fingers.
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Kinova3 is Kinova’s newest 7-DoF robot, with in-
tegrated sensor modules and interfaces designed for
research-oriented applications. It is marginally stronger
than its Jaco counterpart, and is equipped with the
Robotiq85Gripper, Robotiq’s 85mm variation of
their multi-purpose two finger gripper models.

UR5e is Universal Robot’s newest update to the UR5
line, and is a 6-DoF robot intended for collaborative
applications. This newest model boasts an improved
footprint and embedded force-torque sensor in its end
effector. This arm also uses the Robotiq85Gripper
by default in robosuite.

Baxter is an older but classic bimanual robot originally
produced by Rethink Robotics but now owned by Co-
Think Robotics, and is equipped with two 7-DoF arms
as well as an addition joint for controlling its swivel-
ing display screen (inactive and disabled by default in
robosuite). Each arm can be controlled independently
in, and is the single multi-armed model currently sup-
ported in robosuite. Each arm is equipped with a Re-
thinkGripper by default.

GR1 is a 44-DoF humanoid robot produced by Fourier
Intelligence. Standing 165 cm tall and weighing 55 kg,
GR1 has the capability for locomotion, bimanual ma-
nipulation, and head movement. GR1 also features
cutting-edge vision and sound sensors, enabling intu-
itive human-like interactions. Attached to each arm is
a dexterous hand by default in robosuite.
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Spot is a 12-DoF, agile, four-legged robot developed by
Boston Dynamics. It is capable of navigating complex
terrain, avoiding obstacles, and carrying up to 14 kg
of payload capacity. In robosuite, the Spot robot is
equipped with a 6-DoF arm by default.

TIAGo is a bimanual mobile manipulator robot de-
veloped by PAL Robotics. Key features include navi-
gation, interactibility, and a modular design that allows
for customization of end effectors, base drives, and com-
puting capabilities. In robosuite, the TIAGo robot is
equipped with two 7-DoF arms and has mobile base
control.

2.3 Controllers

Controllers transform the high-level actions into low-level virtual motor com-
mands that actuate the robots. The high-level actions are interpreted as refer-
ence signals for the controllers, i.e., desired configurations to be reached. Under-
lying all our robot models is a set of virtual motors actuated at each joint that
execute given torques. The controllers will translate the reference signals into
corresponding joint torque values to try to achieve that desired configuration.
Starting from robosuite v1.5, we employ composite controllers. A composite
controller takes in a high-level action vector and converts it into commands for
each body part controller, where each body part’s controller is responsible for
translating supplied actions into joint torques for that specific part. This design
enables modularity when controlling robots that can be decomposed into mul-
tiple body parts. For example, the Operational Space Controllers [6] interpret
high-level actions as desired end-effector configurations, either positions (three
degrees of freedom) or poses (six degrees of freedom), and compute the corre-
sponding joint torques to move the robot’s end-effector from its current pose to
a desired one. Our controllers facilitate sim-to-real transferability, as torque-
based controllers are common to most real-world existing robotic platforms such
as Rethink Robotics Sawyer, Franka Panda, Kuka IIWA, and Kinova Jaco, and
enables contact-rich manipulation with control of the interaction forces.

We include the following composite controller options as part of robosuite:
BASIC and WHOLE BODY IK. The BASIC composite controller directly splits and
passes down the high level action vector to the individual body part controllers
that operate independently to control various parts of the robot, such as arms,
torso, head, base, and legs. Each part can be assigned a specific body part
controller type (e.g., OSC POSE and JOINT POSITION) depending on the desired
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Table 1: Body Part Controller Configurations available in robosuite
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control behavior for that part. For example, arms may use OSC POSE for pre-
cise end-effector control, while the base may use JOINT VELOCITY for move-
ment across the ground. The WHOLE BODY IK composite controller assumes that
the high level action vector contains end effector pose targets and uses an in-
verse kinematics solver to compute joint angles to reach those pose targets.
Then, the composite controller passes the joint angles down to the correspond-
ing JOINT POSITION body part controllers. Finally, users can leverage custom
third-party composite controllers, by subclassing the CompositeController
class and implementing the custom methods. We provide an example of a
third-party composite controller implementation, WHOLE BODY MINK IK [17], in
robosuite.

We include the following body part controller options as part of robosuite:
OSC POSE, OSC POSITION, JOINT POSITION, JOINT VELOCITY, and JOINT TORQUE

(see Table 1). For OSC POSE, OSC POSITION, and JOINT POSITION, we include
three variants: First, the most common variant is to use a predefined and fixed
set of impedance parameters (impedance mode = fixed). In this case, the ac-
tion space only includes the desired pose, position, or joint configuration. The
second options is to control the stiffness of the actuation (impedance mode =
variable kp), i.e., with how much force will the robot react to deviations to
the desired configuration. This is controlled via the proportional parameters of
the controller (kp). The damping parameters (kd) are automatically set to the
values that lead to a critically damped system. The third variant allows full
control of the impedance behavior (impedance mode = variable), with the
actions including both stiffness and damping parameters. These last two vari-
ants lead to extended action spaces that can control the stiffness and damping
behavior of the controller in a variable manner over the course of an interac-
tion, providing full control to the policy/solution over the contact and dynamic
behavior of the robot.

For the OSC POSITION variants, the robot will hold the initial orientation
while trying to achieve the position given in the action. Variants controlling
stiffness, or stiffness and damping can specify not only these parameters for the
position but also for orientation. Therefore, the dimensionality of the action
spaces with these controllers are 9 and 15 (row 6 and 7 in Table 1).

2.4 Objects

Objects, such as boxes and cans, are essential to building manipulation en-
vironments. We designed the MujocoObject interfaces to standardize and
simplify the procedure for importing 3D models into the scene or procedurally
generate new objects. MuJoCo defines models via the MJCF XML format.
These MJCF files can either be stored as XML files on disk and loaded into
simulator, called MujocoXMLObject, or be created on-the-fly by code prior
to simulation, called MujocoGeneratedObject. Based on these two mech-
anisms of how MJCF models are created, we offer two main ways of creating
your own object:
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• Define an object in an MJCF XML file;

• Use procedural generation APIs to dynamically create an MJCF model.

In the former case, an object can be defined using MuJoCo’s native MJCF
format and can be loaded directly into the simulation using robosuite’s API.
In the latter case, a complex object can be defined by sequentially composing a
set of primitive geoms and defining their poses relative to the rest of the object.
Additionally, robosuite supports custom texture definitions to be added to
specific geoms defined. We refer the interested reader to the HammerObject
class as a showcase example for procedurally-generated objects.

2.5 Sensors

The simulator generates virtual physical signals as response to a robot’s inter-
actions through Sensors. Virtual signals include images, force-torque measure-
ments (from a force-torque sensor like the one included by default in the wrist
of all Gripper models), pressure signals (e.g., from a sensor on the robot’s fin-
ger or on the environment), etc. Sensors, except cameras and joint sensors, are
accessed via the function get sensor measurement, by providing the name of
the sensor.

Every robot joint provides information about its state, including position
and velocity. In MuJoCo these are not measured by sensors, but resolved and
set by the simulator as the result of the actuation forces. Therefore, they are
not accessed through the common get sensor measurement function but as
properties of the Robot simulation API, for instance, joint positions and
joint velocities.

Cameras bundle a name to a set of properties to render images of the envi-
ronment such as the pose and pointing direction, field of view, and resolution.
Inheriting from MuJoCo, cameras are defined in the RobotModel and Arena
models and can be attached to any body. Images, as they would be generated
from the cameras, are not accessed through get sensor measurement but via
the renderer (e.g., OpenGL-based MjViewer or PyGame). In a common user
pipeline, images are not queried directly; we specify one or several cameras we
want to use images from when we create the environment, and the images are
generated and appended automatically to the observation dictionary.

2.6 I/O Devices

Devices define the external controllers a user can teleoperate robots in real-
time. A Device object reads user input from I/O devices, such as a Key-
board, SpaceMouse or MJGUI, and parse it into control commands sent to
the robots. The MJGUI device uses MuJoCo’s built in GUI and users’ cursor
to drag and drop certain pre-defined robot controller targets. The Space-
Mouse from 3Dconnexion is a 3D mouse that we used extensively for collecting
demonstrations [18, 10] and debugging task designs. More generally, we sup-
port any interface that implements the Device abstract class. To support your
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own custom device, simply subclass this base class and implement the required
methods.

3 Benchmark Environments

3.1 Task Descriptions

We provide a brief description of each environment below, along with a sequence
of frames that depict a successful rollout.

Block Lifting: A cube is placed on the tabletop in
front of a single robot arm. The robot arm must lift
the cube above a certain height. The cube location is
randomized at the beginning of each episode.

Block Stacking: Two cubes are placed on the tabletop
in front of a single robot arm. The robot must place one
cube on top of the other cube. The cube locations are
randomized at the beginning of each episode.

Pick-and-Place: Four objects are placed in a bin in
front of a single robot arm. There are four containers
next to the bin. The robot must place each object into
its corresponding container. This task also has easier
single-object variants. The object locations are random-
ized at the beginning of each episode.
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Nut Assembly: Two colored pegs (one square and one
round) are mounted on the tabletop, and two colored
nuts (one square and one round) are placed on the table
in front of a single robot arm. The robot must fit the
square nut onto the square peg and the round nut onto
the round peg. This task also has easier single nut-and-
peg variants. The nut locations are randomized at the
beginning of each episode.

Door Opening: A door with a handle is mounted in
free space in front of a single robot arm. The robot arm
must learn to turn the handle and open the door. The
door location is randomized at the beginning of each
episode.

Table Wiping: A table with a whiteboard surface
and some markings is placed in front of a single robot
arm, which has a whiteboard eraser mounted on its
hand. The robot arm must learn to wipe the white-
board surface and clean all of the markings. The white-
board markings are randomized at the beginning of each
episode.

Two Arm Lifting: A large pot with two handles is
placed on a table top. Two robot arms are placed on
the same side of the table or on opposite ends of the
table. The two robot arms must each grab a handle
and lift the pot together, above a certain height, while
keeping the pot level. The pot location is randomized
at the beginning of each episode.
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Two Arm Peg-In-Hole: Two robot arms are placed
either next to each other or opposite each other. One
robot arm holds a board with a square hole in the center,
and the other robot arm holds a long peg. The two
robot arms must coordinate to insert the peg into the
hole. The initial arm configurations are randomized at
the beginning of each episode.

Two Arm Handover: A hammer is placed on a nar-
row table. Two robot arms are placed on the same side
of the table or on opposite ends of the table. The two
robot arms must coordinate so that the arm closer to
the hammer picks it up and hands it to the other arm.
The hammer location and size is randomized at the be-
ginning of each episode.

3.2 Benchmarking Results

We provide a standardized set of benchmarking experiments as baselines for
future experiments. Specifically, we test Soft Actor-Critic (SAC) [4], the state-
of-the-art model-free RL algorithm, on a select combination of tasks (all) using a
combination of proprioceptive and object-specific observations, robots (Panda,
Sawyer), and controllers (OSC POSE, JOINT VELOCITY). Our experiments were
implemented and executed in an extended version of rlkit, a popular PyTorch-
based RL framework and algorithm library. For ease of replicability, we have
released our official experimental results on a benchmark repository.

All agents were trained for 500 epochs with 500 steps per episode, and utilize
the same standardized algorithm hyperparameters (see our benchmarking repo
above for exact parameter values). The agents receive the low-dimensional
physical states as input to the policy. These experiments ran on 2 CPUs and 12G
VRAM and no GPU, each taking about two days to complete. We normalize
the per-step rewards to 1.0 such that the maximum possible per-episode return
is 500. In Figure 4, we show the per-task experiments conducted, with each
experiment’s training curve showing the evaluation return mean’s average and
standard deviation over five random seeds.

We select two of the easiest environments, Block Lifting and Door Open-
ing, for an ablation study between the operational space controllers (OSC POSE)
and the joint velocity controllers (JOINT VELOCITY). We observe that the choice
of controllers alone has an evident impact on the efficiency of learning. Both
robots learn to solve the tasks faster with the operational space controllers,
which we hypothesize is credited to the accelerated exploration in task space;
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Figure 4: Benchmarking results on the nine standardized environments in
robosuite. For the Two Arm tasks, we use two Panda arms for Panda (OSC)
and two Sawyer arms for Sawyer (OSC)
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this highlights the potential of this impedance-based controller to improve task
performance on robotic tasks that were previously limited by their action space
parameterization. The SAC algorithm is able to solve three of the nine envi-
ronments, including Block Lifting, Door Opening, and Two Arm Peg-in-
Hole, while making slow progress in the other environments, which requires
intelligent exploration in longer task horizons. For future experiments, we rec-
ommend using the nine environments with the Panda robot and the operational
space controller, i.e., the blue curves of Panda (OSC) in Figure 4, for standard-
ized and fair comparisons.

4 Conclusion

robosuite provides a simulation framework and benchmark of environments
for research and development of robot learning solutions. It includes a suite
of standardized tasks for rigorous evaluation and reproducible research. This
framework is built on top of the MuJoCo physics engine. Since its debut in
2017, robosuite has been used by the AI and robotics research community in a
variety of topics, including reinforcement learning [3, 11], imitation learning [10],
sim-to-real transfer [11], etc. With the presented v1.5 version, we hope to
facilitate more diverse research and reproducible and benchmarkable advances.
We invite the community to benchmark their solutions in the provided tasks,
and to contribute to robosuite for future releases.
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